

Session 11: The CAPM II

Fall 2025

Outline

- Systematic and idiosyncratic risk
- Implementation
- Applications of the CAPM

Systematic Risk

- The priced risk of an individual stock is the systematic risk, not the idiosyncratic risk.
- β_i measures how that stock covaries with all the other assets in the economy, or security i 's contribution to the total risk of the market portfolio
 - β_i measures the systematic risk of the stock
- Investors must be compensated for holding systematic risk (the CAPM)
$$E[r_i] = r_f + \beta_i (E[r_M] - r_f)$$

Systematic and Idiosyncratic Risk

- The CAPM equation can be (also) written as

$$r_i = r_f + \beta_i(r_M - r_f) + e_i$$

$$\beta_i = \frac{\text{cov}[r_i, r_M]}{\sigma_M^2} \quad E[e_i] = 0 \quad \text{cov}[e_i, r_M] = 0$$

- The total risk of a security can be partitioned into two components

$$\underbrace{\sigma_i^2}_{\substack{\text{var}(r_i) \\ \text{total risk}}} = \underbrace{\beta_i^2 \sigma_M^2}_{\substack{\text{systematic} \\ \text{market risk}}} + \underbrace{\sigma_{ei}^2}_{\substack{\text{var}(e_i) \\ \text{idiosyncratic risk}}}$$

An Example

- XYZ Internet stock has a volatility of 90% and a beta of 3. The market portfolio has an expected return of 14% and a volatility of 15%. The risk-free rate is 7%.
- What is the equilibrium expected return on XYZ stock?

- What proportion of XYZ Internet's variance is diversified away in the market portfolio?

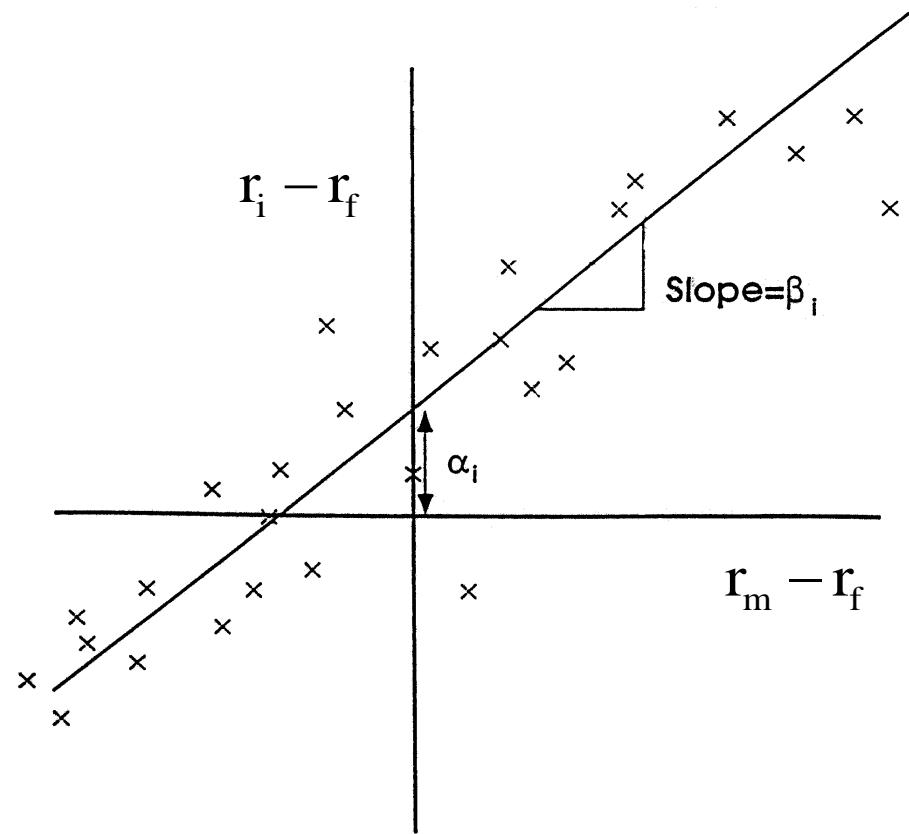
Implementation

- Beta from regression
 - ✓ Industry betas
 - ✓ Adjusted beta
- Risk-free rate—horizon-matched Treasury yield
- Market risk premium
 - ✓ Historical average
 - ✓ Forward looking
 - ✓ Model generated

Security Characteristic Line (SCL)

$$r_{i,t} - r_{f,t} = \alpha_i + \beta_i(r_{M,t} - r_{f,t}) + e_{i,t}$$

- The SCL is the “regression line”
- The CAPM implies $\alpha_i = 0$



Estimating Beta

- Get data on “excess returns”

$$R_i(t-1, t) \equiv R_{i,t} = r_{i,t} - r_{f,t} \quad R_M(t-1, t) \equiv R_{M,t} = r_{M,t} - r_{f,t}$$

Note: $r_{f,t}$ is the risk-free rate from time $t-1$ to time t , i.e., it is the 1-period rate known at time $t-1$

- Estimate β_i by running the regression

$$R_{i,t} = \alpha_i + \beta_i R_{M,t} + e_{i,t}$$

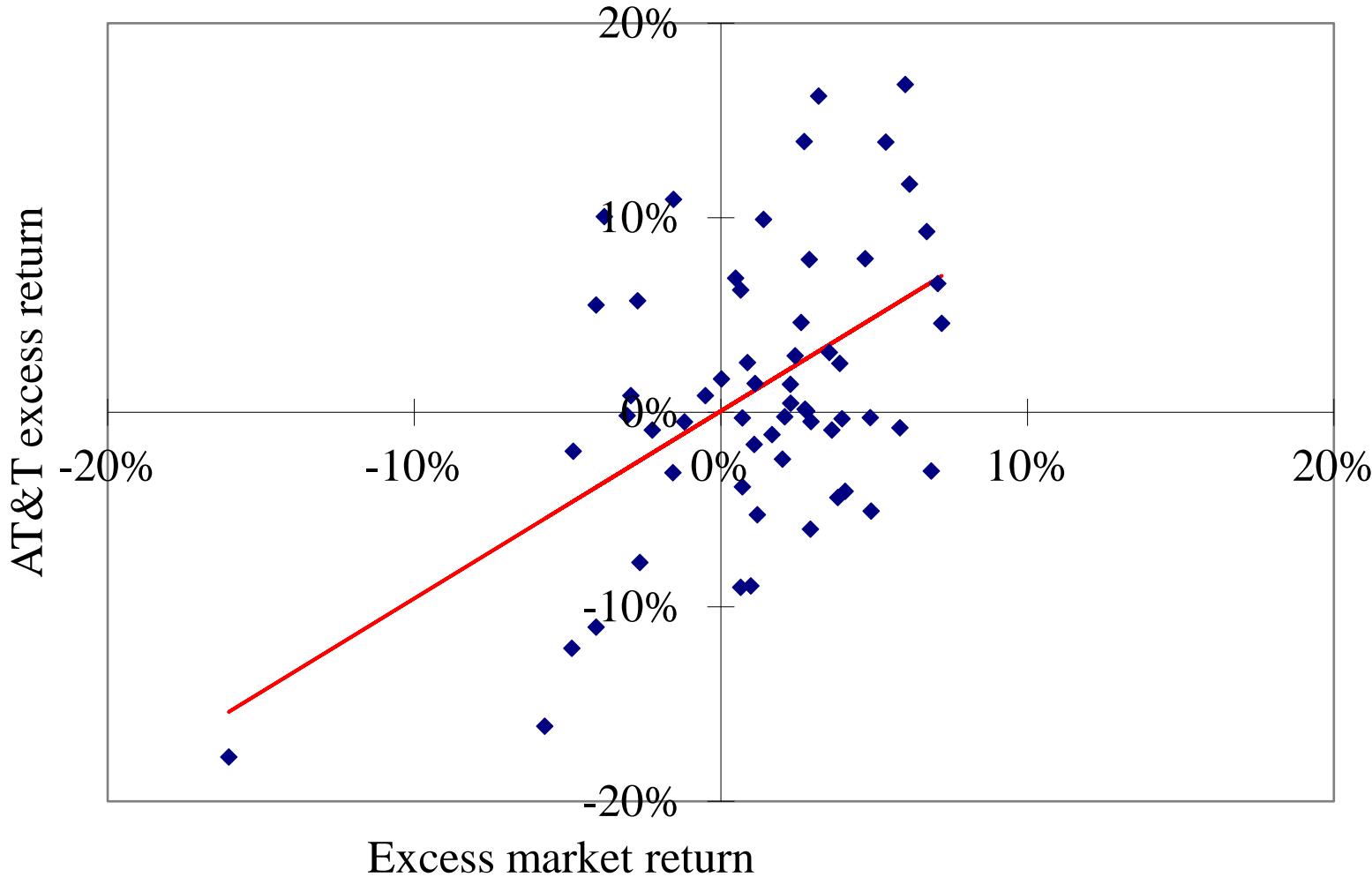
(typically, 60 months of data are used)

An Example: AT&T

- Take 5 years (1994-1998) of monthly data on AT&T returns, S&P500 returns and 1-month US T-bills
- Construct excess returns
- Run the regression, e.g., using Excel (you need to install the *Analysis ToolPak* or use =SLOPE)
- Excel output

	<i>Coefficients</i>	<i>SE</i>	<i>t Stat</i>	<i>P-value</i>
Intercept	0.0007	0.0091	0.0748	0.9406
X Variable 1	0.9637	0.2172	4.4366	0.0000

SCL for AT&T



Applications of the CAPM

1. Portfolio choice in equilibrium
2. “Fair” security returns
3. Benchmark for security analysis
4. Required return used in capital budgeting

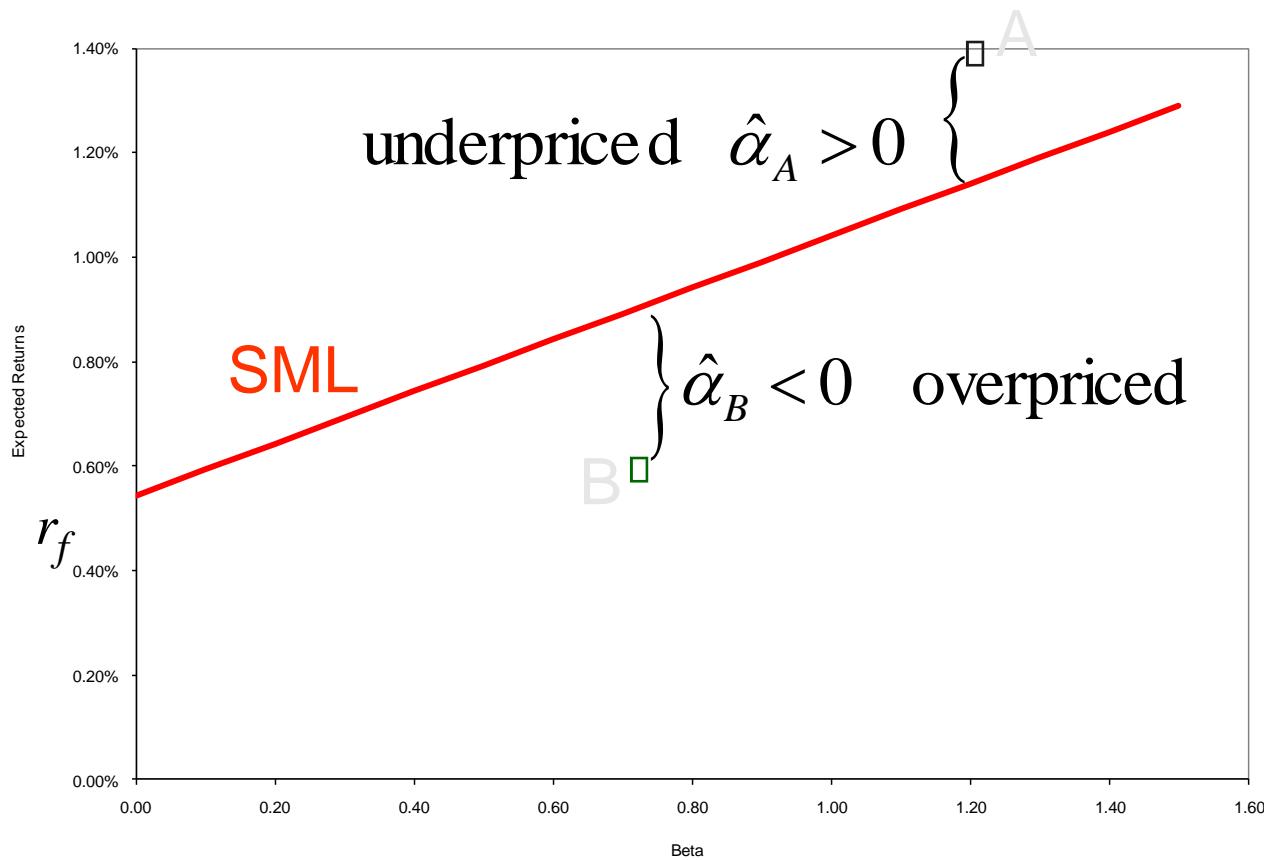
Stock Selection

- One possible benchmark for stock selection is to find assets that are cheap relative to the CAPM
- A security i 's alpha is defined as:

$$\alpha_i = E[r_i] - r_f - \beta_i(E[r_M] - r_f) \quad \beta_i = \frac{\text{cov}[r_i, r_M]}{\sigma_M^2}$$

- Some fund managers try to buy positive alpha stocks and (short) sell negative alpha stocks
- The CAPM predicts that all alphas are zero

Stock Selection



Active and Passive Strategies

- An “active” strategy tries to beat the market by stock picking, market timing, etc.
- The CAPM implies that
 - ✓ Security analysis is not necessary
 - ✓ Every investor should just buy a mix of the risk-free security and the market portfolio, i.e., a “passive” strategy
- Grossman-Stiglitz paradox: How can the market be efficient if everyone uses a passive strategy?

Capital Budgeting and NPV

- Should a firm undertake a long-term risky project?
- Calculate Net Present Value (NPV), using CAPM to calculate required rate of return
- Manager's objective: increase value of firm
→ only undertake projects with $NPV > 0$
- Compare with decision based on Internal Rate of Return (IRR) on project

An Example: NPV

- Business plan generates expected project cash flows in each year:

	<u>0</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>
	-1000	0	0	300	600	900

- Should you undertake this project?
- Discount rate? *Cost of capital* is given by CAPM

$$E[r_i] = r_f + \beta_i E[r_M - r_f]$$

- If $\beta_i = 1.75$, $r_f = 0.04$, $E[r_M] = 0.12$, then $E[r_i] = 0.18$
- $NPV = -1000 + 300/(1.18)^3 + 600/(1.18)^4 + 900/(1.18)^5$
 $= -114.54 < 0 \rightarrow$ Don't undertake project!
- If $\beta_i = 0.50$, then $E[r_i] = 0.08$ and $NPV = 291.69 > 0$

An Example: IRR

- Where is the break-even point?
- IRR is the discount rate that sets $NPV = 0$

$$-1000 + \frac{300}{(1+IRR)^3} + \frac{600}{(1+IRR)^4} + \frac{900}{(1+IRR)^5} = 0$$

- $IRR = 14.67\%$
- IRR rule: Undertake project if $E[r_i] < IRR$
- When comparing attractiveness of 2 projects, use NPV rule
- Is this analysis only appropriate for well diversified firm/project?

Summary

- The CAPM follows from equilibrium conditions in a frictionless, mean-variance economy with rational investors
- Prediction 1: Everyone should hold a mix of the market portfolio and the risk-free asset
- Prediction 2: The expected return on an individual security is a linear function of its beta, i.e., securities should be on the SML. A stock's beta can be estimated using historical data by linear regression, i.e., by estimating the SCL

$$\beta_i = \frac{\text{cov}[R_i, R_M]}{\sigma_M^2}$$

Assignments

- Reading
 - BKM: Chapters 8
 - Problems: 8.1-8.12, 8.15-8.17, 8.19-8.22, CFA 8.1-8.6
- Assignments
 - Problem Set 3 October 8th