

Session 15: Equity Valuation I

Fall 2025

Outline

- Balance sheet valuation concepts
- Fundamental (intrinsic) value
- The Dividend Discount Model
 - Zero dividend growth
 - Constant dividend growth—the Gordon Growth Model

Balance Sheet Valuation

➤ **Book value:**

the net worth of a company as shown on its balance sheet. It's the difference between the book value of the firm's assets and the firm's liabilities

➤ **Liquidation value:**

the money you can make when you break up the firm by selling its assets, paying back its liabilities (debt) and distributing the remainder to the shareholders. It is a lower bound on market value

If market value is below the liquidation value, the firm becomes an attractive takeover prey (i.e.: It would be profitable for a corporate raider to take it over and liquidate it).

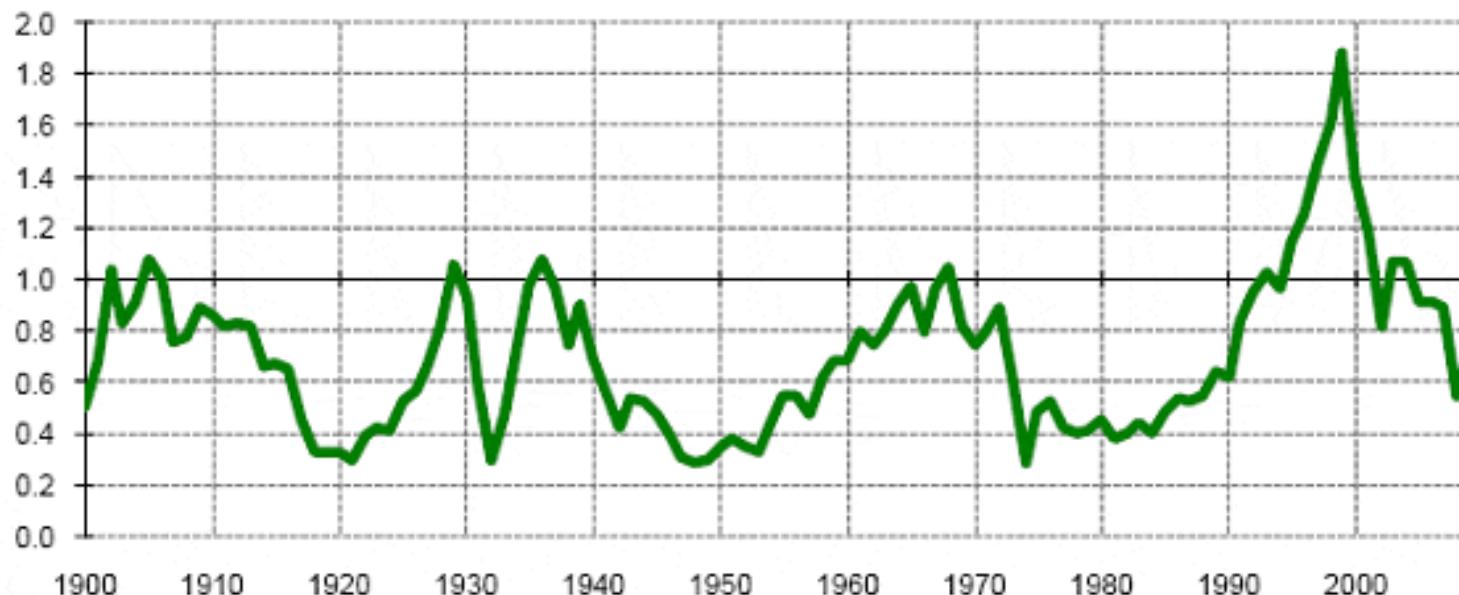
➤ **Replacement cost:**

It is the cost of replacing all the firm's assets and liabilities.

If market price is far above replacement cost, competitors are likely to move into this business (Tobin's q is 1 in the long-run)

Book-to-Market ratio

Balance Sheet, Intel 2004 (Book values, \$billions)


Assets:	\$52.39	Liabilities:	\$12.03
		Equity:	\$40.36
Total:	\$52.39	Total:	\$52.39

- There are 5.6 billion shares outstanding
→ $40.36/5.6 = \$7.20$ book value per share
- The market value per share is \$21.48
→ Book-to-market ratio is $7.20/21.48 = 0.34$
- Growth firms: low B/M ratio, e.g. Intel (new economy)
- Value firms: high B/M ratio, e.g. utilities (old economy)

Tobin's q

Tobin's q = market value / replacement value

Tobin's Q Ratio, 1900 – June 26, 2009

What's the difference between replacement cost and book value?
Inflation!

Warren Buffett

- “**Intrinsic value** (or fundamental value) is an all-important concept that offers the only logical approach to evaluating the relative attractiveness of investments and businesses. Intrinsic value can be defined simply: It is the discounted value of the cash that can be taken out of a business during its remaining life.”
- Example: Book value/intrinsic value of a college education

Fundamental/Intrinsic Value

A stock is a claim to future dividends

- Consider the distribution of next year's dividend, D_1 , and price, P_1
- Find the required rate of return, k , with CAPM
- Fundamental-value of the stock at time 0 is V_0 :

$$V_0 = \frac{E(D_1) + E(P_1)}{1 + k} \Leftrightarrow k = \frac{E(D_1) + E(P_1)}{V_0} - 1$$

- Suppose that there is a mispricing, $P_0 \neq V_0$, then expected HPR:

$$E[r] = \frac{E(D_1) + E(P_1)}{P_0} - 1 \neq k$$

Fundamental vs. Actual Value

- Suppose
 - ✓ The current stock price is \$48
 - ✓ We expect next year's price and dividend to be \$52 and \$4
 - ✓ The beta of the stock is 1.2
 - ✓ The risk free rate is 6%
 - ✓ The expected market excess return is 5%
- Compute the **required rate of return** and **expected holding period return**

Dividend Discount Model

- Assume that the market is efficient so that the price, P_0 , equals the fundamental value, V_0
- Use the fundamental value equation repeatedly:

$$\begin{aligned}V_0 &= \frac{E(D_1) + E(P_1)}{1+k} = \frac{E(D_1)}{1+k} + \frac{E(P_1)}{1+k} \\&= \frac{E(D_1)}{1+k} + \frac{E(D_2) + E(P_2)}{(1+k)^2} \\&= \frac{E(D_1)}{1+k} + \frac{E(D_2)}{(1+k)^2} + \frac{E(D_3)}{(1+k)^3} + \frac{E(D_4)}{(1+k)^4} + \dots\end{aligned}$$

Zero Dividend Growth

➤ Suppose that dividends are constant

$$E(D_1) = D_0, E(D_2) = D_0, \text{ etc.}$$

➤ Using the DDM:

$$\begin{aligned} V_0 &= \frac{E(D_1)}{1+k} + \frac{E(D_2)}{(1+k)^2} + \frac{E(D_3)}{(1+k)^3} + \dots \\ &= \frac{D_0}{1+k} + \frac{D_0}{(1+k)^2} + \frac{D_0}{(1+k)^3} + \dots \\ &= \frac{D_0}{k} = \frac{E(D_1)}{k} \end{aligned}$$

Constant Dividend Growth

- Gordon Growth Model (GGM)
- Suppose that expected dividends grow at a rate g
 $E(D_1) = (1+g)D_0$, $E(D_2) = (1+g)^2D_0$, etc.
- Using the DDM:

$$\begin{aligned}V_0 &= \frac{E(D_1)}{1+k} + \frac{E(D_2)}{(1+k)^2} + \frac{E(D_3)}{(1+k)^3} + \dots \\&= \frac{D_0(1+g)}{1+k} + \frac{D_0(1+g)^2}{(1+k)^2} + \frac{D_0(1+g)^3}{(1+k)^3} + \dots \\&= \frac{D_0(1+g)}{k-g} = \frac{E(D_1)}{k-g}\end{aligned}$$

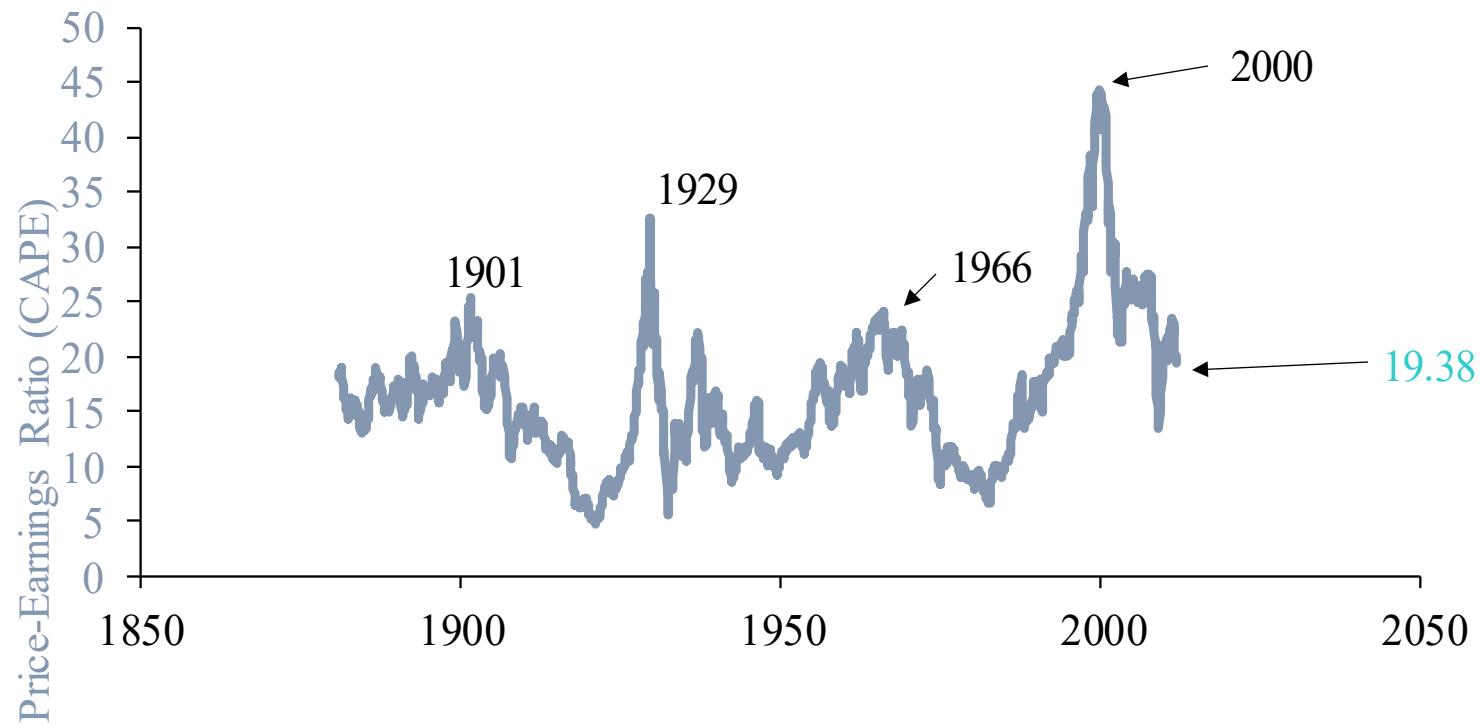
An Example

- Suppose $E(D_1) = \$4$, $r_f = 6\%$, $\beta = 1.2$, $(E[r_M] - r_f) = 5\%$, $g = 4\%$
 - $k = r_f + \beta(E[r_M] - r_f) = 6\% + 1.2(5\%) = 12\%$
 - $P_0 = V_0 = E(D_1)/(k-g) = 4/(0.12-0.04) = \50.00
- Sensitivity analysis (50% increase in one variable)
 - Suppose $E(D_1) = \$6$, then $P_0 = \$75.00$
 - Suppose $r_f = 9\%$, then $P_0 = \$36.36$
 - Suppose $(E[r_M] - r_f) = 7.5\%$, then $P_0 = \$36.36$
 - Suppose $\beta = 1.8$, then $P_0 = \$36.36$
 - Suppose $g = 6\%$, then $P_0 = \$66.67$

Valuation Ratios Under the GGM

- Price-dividend ratio

$$\frac{P_0}{D_0} = \frac{1+g}{k-g}$$


- Price-earnings ratio

- $D_0 = (1-b)E_0$ with “earnings retention ratio” of b

$$\frac{P_0}{E_0} = \frac{(1+g)(1-b)}{k-g}$$

- Price-to-book ratio (market-to-book ratio)
- Price-to-sales ratio

U.S. (Trailing) P/E Ratio

Conclusion

Under a few simple assumptions we can develop an intuitive stock valuation model that depends on

- Current earnings
- Future earnings (growth)
- Discount rates (TVM and risk)

Assignments

- Reading
 - BKM: Chapter 13
 - Problems: 13.2-13.3, 13.5-13.7, 13.11-13.16, CFA 13.1-13.2
- Assignments
 - Problem Set 4 due 29th October (Session 18)