

Session 20: Fixed Income III

Fall 2025

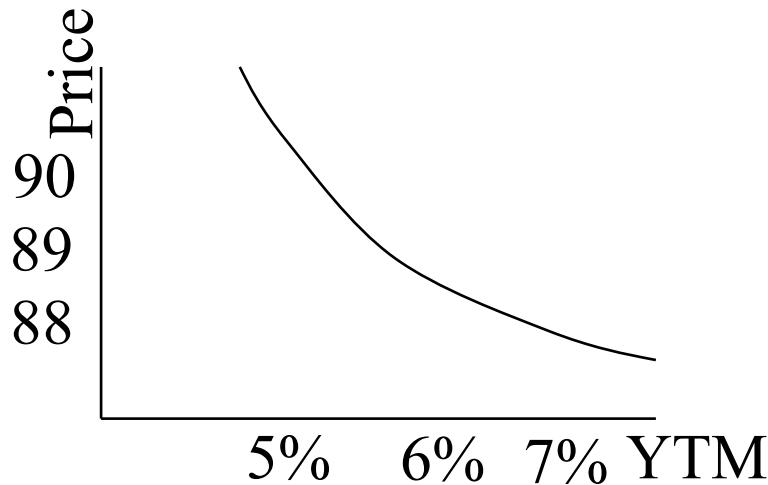
Outline

- Interest rate sensitivity (of bond prices)
- Duration (convexity)
- Default risk

Interest Rate Sensitivity

- First order effect: Bond prices and interest rates are negatively related
- Maturity matters: Prices of long-term bonds are more sensitive to interest rate changes than short-term bonds
- Convexity: An increase in a bond's YTM results in a smaller price decline than the price gain associated with a decrease of equal magnitude in the YTM

An Example



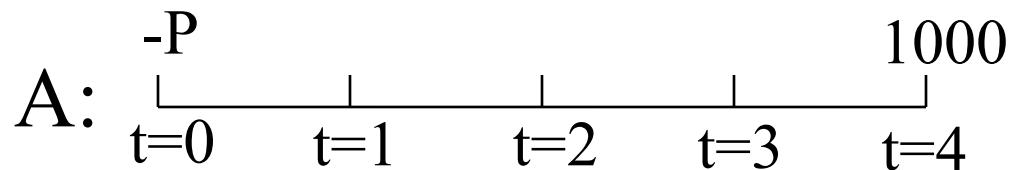
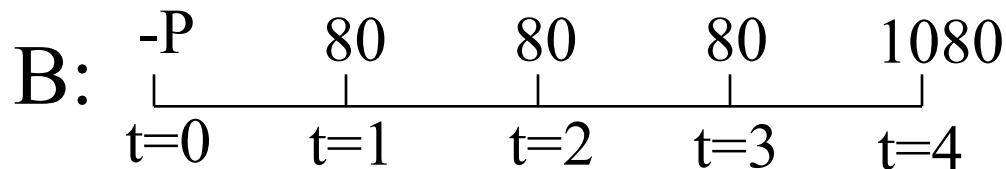
YTM	1-year	2-year
5%	95.24	90.70
6%	94.34	89.00
7%	93.46	87.34

- Negative convex relation between YTM and price:
 - Price change 2-year ZCB 6%→5%: $90.70 - 89.00 = 1.70$
 - Price change 2-year ZCB 6%→7%: $87.34 - 89.00 = -1.66$
- Maturity matters:
 - % change 1y 6%→7%: $(93.46 - 94.34)/94.34 = -0.93\%$
 - % change 2y 6%→7%: $(87.34 - 89.00)/89.00 = -1.86\%$

Duration: The Concept

Duration (or Macaulay duration)

- The sensitivity of the price of a bond to changes in the yield
- Can often be interpreted as the “average” time you have to wait for your payments



The Derivation

The price sensitivity is linked to the average time you have to wait for your payments, provided the weights are the contributions to the price of the bond:

$$P = \frac{CF_1}{(1+y)^1} + \frac{CF_2}{(1+y)^2} + \dots + \frac{CF_T}{(1+y)^T}$$

$$\frac{dP}{dy} = -1 \frac{CF_1}{(1+y)^2} - 2 \frac{CF_2}{(1+y)^3} - \dots - T \frac{CF_T}{(1+y)^{T+1}}$$

$$-\frac{dP}{dy} \frac{1+y}{P} = 1 \frac{CF_1}{P(1+y)^1} + 2 \frac{CF_2}{P(1+y)^2} + \dots + T \frac{CF_T}{P(1+y)^T}$$

Summary

- The duration (D) of a bond is defined as minus the **elasticity** of its price (P) with respect to (1 plus) its YTM (y):

$$D = -\frac{dP}{dy} \frac{1+y}{P} = \sum_1^T w_t t \quad \text{where} \quad w_t = \left(\frac{CF_t}{(1+y)^t} \right) \bigg/ P = PV(CF_t)/P$$

- For fixed cash flows, duration is equal to the average of the cash-flow times, weighted by their contribution to the present value of the bond
- The price response to a yield change is therefore

$$\frac{\Delta P}{P} \cong -\underbrace{\frac{D}{1+y}}_{\text{modified duration}} \Delta y$$

An Example

What is the duration of a 3-year coupon bond with a face value of \$1000, a coupon rate of 8%, and a YTM of 10%?

An Example cont'd

- If the YTM changes to 10.1%, what would be the (relative) change in price?
- Does the duration formula imply that long-term bonds are more risky (bigger price changes) than short-term bonds?

Useful Facts

- What is the duration of zero-coupon bond?
- What must be true for the duration of a coupon bond?
- What happens to the duration of a coupon bond if (all else equal) the coupon rate increases?
- What happens to the duration of the bond if (all else equal) the YTM increases?

Useful Facts cont'd

- Factors affecting duration
 - Maturity (+)
 - Coupon rate (-)
 - YTM (-)
- The duration of a portfolio is the weighted average of the durations of the constituents:
$$D_p = \sum_i w_i D_i$$
- What is the duration of a perpetuity?

Convexity

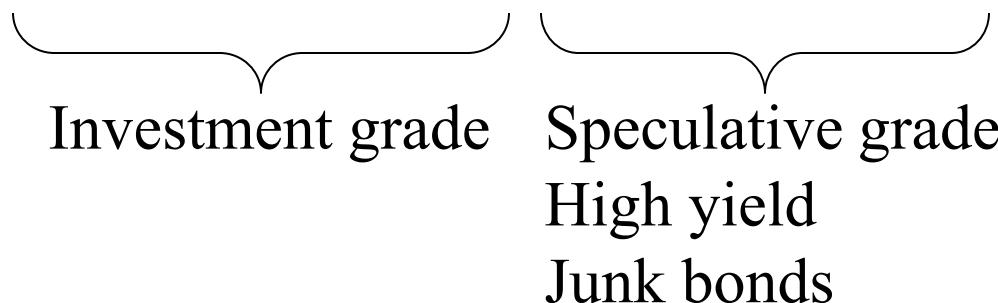
- The sensitivity of price with respect to yield is approximated by a linear function when using duration
- The relation is really non-linear (convex)
 - When yields decline, the price increase in the bond is underestimated by the simple duration formula
 - When yields increase, the price decline in the bond is overestimated by the simple duration formula
 - A convexity term corrects the problem

Default Risk

- Not all bonds are risk-free, i.e., there is some chance the actual payments will not equal the promised payments
- The amount of default (credit) risk is summarized by the bond rating

Moody's: Aaa Aa A Baa Ba B Caa Ca C D

S&P: AAA AA A BBB BB B CCC CC C D



Default Risk Premiums

- Risky bonds offer higher yields than otherwise comparable risk-free securities
- This yield premium is made up of two components
 - Compensation for the difference between promised cash flows and expected cash flows
 - A risk premium, i.e., a higher expected return to compensate for the risk (think SML!)
- The YTM on risky bonds is NOT the expected return

Conclusion

- Bonds are exposed to 2 types of risk
 - Interest rate risk (duration)
 - Default risk (rating)
- In general, investors require compensation for these risks in the form of higher yields

Assignments

- Reading
 - BKM: Chapters 11.2, 11.4
 - Problems: 11.11, 11.15-11.17, 11.20
- Assignments
 - Problem Set 5 due the 14th November